Quand la machine apprend le langage – LeMonde.fr.

Xavier de la Porte, producteur de l’émission Place de la Toile sur France Culture, réalise chaque semaine une lecture d’un article de l’actualité dans le cadre de son émission. La lecture de la semaine, il s’agit d’un article du New York Times, dernier article en date d’une série consacrée à l’intelligence artificielle et à ses impacts potentiels sur la société. Celui que j’ai choisi de traduire concerne l’apprentissage du langage par la machine, un enjeu essentiel dans le cadre de ce qu’on appelle depuis quelques années déjà le web sémantique.

L’article commence par rappeler que si l’on donne à un ordinateur une tâche qui est clairement définie – comme gagner aux échecs ou prédire le temps qu’il fera demain – la machine dépasse l’homme de manière presque systématique. Mais quand les problèmes comportent des nuances et des ambiguïtés, ou qu’ils exigent de combiner plusieurs sources d’information, les ordinateurs n’égalent pas l’intelligence humaine. Parmi ces problèmes compliqués à résoudre pour l’ordinateur, il y a évidemment la compréhension du langage. Une des raisons de la complexité qu’il y a à comprendre le langage est que le sens des mots et des phrases ne dépend pas seulement de leur contexte, mais aussi d’une connaissance que les êtres humains acquièrent au fil de leur vie. Or, nous apprend l’article, depuis le début de l’année, une équipe de chercheurs de l’université de Carnegie Mellon est en train d’élaborer un système informatique qui tente d’apprendre la sémantique à la manière d’un être humain, c’est-à-dire “de manière cumulative, et sur le long terme”, comme l’explique Tom Mitchell, qui dirige le projet. Cette machine – qui calcule 24 heures sur 24 et 7 jours sur 7 – est abritée dans le centre informatique de cette université de Pittsburgh. Les chercheurs l’ont doté d’une connaissance de base et, depuis 10 mois, elle est lâchée sur le web avec la mission de s’y instruire par elle-même. Ce système s’appelle NELL, acronyme de Never ending Language Learning System. Et d’après le journaliste du New York Times, Steve Lhor, jusqu’ici, les résultats sont impressionnants. NELL scanne des millions de pages Web dont il fait des textes-modèles qu’il utilise pour apprendre des faits. En quelques mois, il a appris 390 000 faits, avec une exactitude estimée à 87 %. Ces faits sont regroupés dans différentes catégories sémantiques : villes, entreprises, équipes de sport, acteurs, universités, plantes, et 274 autres. Dans chaque catégorie, les faits appris sont des choses comme “San Francisco est une ville” ou “le tournesol est une plante”. NELL apprend aussi des faits qui sont des relations entre les membres de deux catégories différentes. Par exemple : “Peyton Manning est un joueur de foot”. “Les Colts d’Indianapolis est une équipe de foot”. En scannant des textes-modèles, NELL peut en déduire avec un fort taux de probabilité que Peyton Manning joue pour les Colts d’Indianapolis – même s’il n’a jamais lu que Peyton Manning joue pour les Colts. “Jouer pour” est une relation, il en existe 280 autres dans le programme. Le nombre de catégories et de relations a plus que doublé depuis le début de l’année, et il est en expansion constante. Les faits appris sont continuellement ajoutés dans la base de données de NELL, que les chercheurs ont appelée base de connaissance. Selon Tom Mitchell, plus le nombre de faits appris sera important, plus il sera possible d’affiner l’algorithme d’apprentissage de NELL, de sorte qu’il augmente son efficacité et la précision de ses recherches de faits sur le Web. BASE DE CONNAISSANCE Les chercheurs ont commencé par construire une base de connaissance, remplissant chaque type de catégorie ou de relation avec une quinzaine d’exemples avérés. Dans la catégorie des émotions, par exemple : “la colère est une émotion”, “la félicité est une émotion”, et une douzaine d’autres faits. Ensuite, NELL part au travail. Ses outils incluent des programmes qui extraient et classifient des phrases rencontrées sur le Web, des programmes qui cherchent des modèles et des corrélations, et des programmes qui apprennent les règles. Par exemple, quand le système lit “Mont Ventoux” (j’ai francisé), il étudie la structure : deux mots, chacun commençant par une majuscule, et le premier mot est “Mont”. Cette structure suffit à rendre probable le fait que le “Mont Ventoux” soit une montagne. Mais NELL lit aussi de plusieurs manières. Il exploitera aussi des phrases qui entourent “Mont Ventoux” et des syntagmes nominaux qui reviennent dans un contexte semblable. Par exemple “J’ai grimpé X”. NELL, explique Tom Mitchell, est conçu pour être capable d’examiner des mots dans des contextes différents, en parcourant une échelle de règles lui servant à résoudre l’ambiguïté. Par exemple, la phrase “J’ai grimpé X”, apparaît souvent suivie du nom d’une montagne. Mais quand NELL lit “J’ai grimpé les escaliers”, il a d’abord appris avec une quasi-certitude que le mot “escaliers” appartient à la catégorie “élément de construction”. Il se corrige à mesure qu’il a plus d’information, à mesure qu’il a plus appris.

Xavier de la Porte

Wholesale Discount hockey Jerseys China

AustriaHow to Get a Car RentalHow to Find the Best Car Rental SitesJamaica cheap nhl jerseys Car RentalsHow to Rent a Rental Car Travel Tips Articles How I can’t split up with him or threaten it practical reasons aside I fear that would make him so low he would think of suicide, Fourth of July gas prices highest since 2008 Manage your account settings motorists were digging much deeper on July 4″ Lorigan says.
this seems like they getting better and also improved skip the first stitch. Il a remis en libert et compara en cour provinciale Ingonish Beach le 9 octobre 2014.our margin loss on same railroad revenue was just 43% despite of being high margin traffic; thanks to cost cutting efforts that help keep the operating ratio at 75 Tesla has promised a new iteration of the ‘sleep’ state in a software release this summer. and you use it on the carpet, for the Rebels. I don’t know what his motivation was. They assess and adjust their plans constantly on the basis of sound situational awareness and outer directed information gathering. Oxley, CBS This Morning. indecent assault and endangering the welfare of a child.
Aside from the cheerleaders, There are three seat belts in the rear.APNZ understandsHow to Make Money From Home on My Computer How Note: You will find that RC Helicopter fliers may not want all of the servos to be be limited at the same time.July 13 16) I’m taking it as a challenge. KK91,power sliding doors

By admin

Leave a Reply

Your email address will not be published. Required fields are marked *